Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anilinium hydrogen sulfate

Zina Boutobba, Amani Direm and Nourredine Benali-Cherif*

Laboratoire des Structures, Propriétés et Interactions Inter-Atomiques., Centre Universitaire Abbes Laghrour, Khenchela 40000, Algeria Correspondence e-mail: benalicherif@hotmail.com

Received 23 January 2010; accepted 6 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.117; data-to-parameter ratio = 21.2.

The asymmetric unit of the title compound, $C_6H_8N^+$ ·HSO₄⁻, contains two cations and two anions which are linked to each other through N-H···O hydrogen bonds, formed by all H atoms covalently bonded to the N atoms. In addition, strong O-H···O anion-anion hydrogen-bond interactions are also observed.

Related literature

For hydrogen bonding, see: Zimmerman & Corbin (2000); Brunsveld *et al.* (2001); Desiraju (2002); Desiraju & Steiner (1999); Steiner (2002); Etter *et al.* (1990); Bernstein *et al.* (1995). For related structures, see: Benali-Cherif, Boussekine *et al.* (2009); Messai *et al.* (2009); Benali-Cherif, Falek *et al.* (2009); Rademeyer (2004); Jayaraman *et al.* (2002); Smith *et al.* (2004); Paixão *et al.* (2000).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_8N^+\cdot HSO_4}^- \\ M_r = 191.20 \\ {\rm Orthorhombic}, \ Pca2_1 \\ a = 14.3201 \ (2) \ {\rm \mathring{A}} \\ b = 9.0891 \ (3) \ {\rm \mathring{A}} \\ c = 12.8771 \ (2) \ {\rm \mathring{A}} \end{array}$

Data collection

Nonius KappaCCD diffractometer 16963 measured reflections 4641 independent reflections Mo $K\alpha$ radiation $\mu = 0.36 \text{ mm}^{-1}$ T = 293 K $0.2 \times 0.15 \times 0.1 \text{ mm}$

V = 1676.04 (7) Å³

Z = 8

3108 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.049$

Refinement

```
R[F^2 > 2\sigma(F^2)] = 0.041

wR(F^2) = 0.117

S = 1.02

4641 reflections

219 parameters

1 restraint
```

H-atom parameters not refined $\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.47 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2096 Friedel pairs Flack parameter: 0.08 (9)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H11 \cdots O1A^{i}$	0.89	1.95	2.821 (2)	167
$N1A - H22 \cdots O3B$	0.89	1.95	2.817 (4)	163
$N1A - H33 \cdots O2B^{iii}$	0.89	2.01	2.884 (3)	169
$N1B - H1 \cdots O1B^{ii}$	0.89	1.94	2.828 (3)	175
$N1B - H2 \cdot \cdot \cdot O3A^{ii}$	0.89	2.05	2.867 (3)	153
$N1B - H3 \cdots O1A$	0.89	2.58	3.069 (3)	115
$N1B - H3 \cdots O2A$	0.89	2.03	2.916 (3)	175
$O4A - H4 \cdots O3B$	0.82	1.79	2.603 (4)	175
$O4B - H44 \cdots O3A^{i}$	0.82	1.84	2.635 (4)	163

Symmetry codes: (i) $x - \frac{1}{2}, -y + 1, z$; (ii) $-x + 1, -y + 1, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

Data collection: *KappaCCD Server Software* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-32 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseille, France, for providing diffraction facilities and the Centre Universitaire de Khenchela for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2534).

References

- Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Dadda, N. (2009). Acta Cryst. E65, o2744.
- Benali-Cherif, N., Falek, W. & Direm, A. (2009). Acta Cryst. E65, o3058o3059.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). *Chem. Rev.* **101**, 4071–4097.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p 507. New York: Oxford University Press.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.
- Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, 0460.

Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Paixão, J. A., Matos Beja, A., Ramos Silva, M. & Martin-Gil, J. (2000). Acta Cryst. C56, 1132–1135. Rademeyer, M. (2004). Acta Cryst. E60, 0958-0960.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

Zimmerman, S. C. & Corbin, P. S. (2000). Struct. Bond. 96, 63-94.

Acta Cryst. (2010). E66, o595-o596 [doi:10.1107/S1600536810004782]

Anilinium hydrogen sulfate

Z. Boutobba, A. Direm and N. Benali-Cherif

Comment

The main purpose of this structural study was a determination of the arrangement of the cations and anions which are held together by two-dimensional hydrogen-bond networks.

Hydrogen bonding is one of the most versatile noncovalent forces in supramolecular chemistry and crystal engineering (Zimmerman & Corbin, 2000; Brunsveld *et al.*, 2001; Desiraju, 2002). Therefore, in the past decades assessment of discrete hydrogen bonding patterns had received great attention (Steiner, 2002; Desiraju & Steiner, 1999) because of its widespread occurrence in biological systems.

The aim of this paper is to discuss hydrogen patterns assuring the connection between anilinium and hydrogensulfate entities and to establish their different graph-set motifs (Bernstein *et al.*, 1995).

Bis(anilinium hydrogensulfate) is one of the hybrid compounds, rich in H-bonds (Benali-Cherif, Boussekine, *et al.*, 2009; Messai *et al.*, 2009; Benali-Cherif, Falek, *et al.*, 2009), which could have potential importance in constructing sophisticated assemblies from discrete ionic or molecular building blocks due to the strength and the directionality of hydrogen bonds (Steiner *et al.* 2002, Jayaraman *et al.*, 2002).

Recently, similar structures containing anilinium cations have been reported. Among examples, can be named the folowing ones: anilinium nitrate (Rademeyer, 2004), anilinium picrate (Smith *et al.*, 2004), anilinium hydrogenphosphite and anilinium hydrogenoxalate hemihydrate(Paixão *et al.*, 2000).

The structure of (I) may be described as formed by alternating sheets of cations and anions (Fig. 2) which are held together with four and five-centered N—H···O H-bonds to form $C_4^{4}(10)$ infinite chains running through the c direction. Moreover, strong O—H···O hydrogen bonds observed between bisulfate anions generate $C_2^{2}(8)$ chains in the *a* axis direction. The infinite chains resulting from anion-anion and anion-cation interactions can be described as zigzag layers parallel to the (*ac*) plane (Fig. 3). The crossing of these chains builds up different rings with $R_3^{3}(10)$ and $R_5^{4}(16)$ graph set motifs (Fig. 3) (Etter *et al.*, 1990; Bernstein *et al.*, 1995).

Experimental

Single crystals of the title compound are prepared by slow evaporation at room temperature of an aqueous solution of aniline and sulfuric acid.

Refinement

The title compound crystallizes in the centrosymmetric space group P c a 2_1 . All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were located from Fourier difference maps and treated as riding with C—H =

0.93 Å, N-H = 0.89 Å and O-H = 0.82 Å. Their isotropic displacement parameters were set equal to 1.2Ueq (C) and 1.5Ueq (N, O).

Figures

Fig. 1. ORTEP view of the asymmetric unit of (I) showing 10% probability displacement ellipsoids.

Fig. 2. Alternating cationic and anionc layers visualized through the (001) plane.

F(000) = 800

 $\theta = 2.7 - 30.0^{\circ}$

 $\mu = 0.36 \text{ mm}^{-1}$

Prism, colourless

 $0.2\times0.15\times0.1~mm$

T = 293 K

 $D_{\rm x} = 1.516 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 16963 reflections

Fig. 3. Intermolecular hydrogen bonding patterns running parallel to (bc) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x-1/2, y+1, z; (ii) -x+1, -y+1, z+1/2; (iii) -x+1/2, y, z+1/2.

Anilinium hydrogen sulfate

Crystal	data	
Crysiui	иши	

 $C_6H_8N^+ \cdot HSO_4^ M_r = 191.20$ Orthorhombic, Pca21 Hall symbol: P 2c -2ac a = 14.3201 (2) Å b = 9.0891 (3) Å c = 12.8771 (2) Å $V = 1676.04 (7) \text{ Å}^3$ Z = 8

Data collection

Nonius KappaCCD diffractometer	3108 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.049$
graphite	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
$\omega - \theta$ scans	$h = -19 \rightarrow 17$

16963 measured reflections	$k = -9 \rightarrow 12$
4641 independent reflections	$l = -18 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters not refined
$wR(F^2) = 0.117$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0622P)^{2} + 0.1354P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
4641 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
219 parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 2096 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.08 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1A	0.21732 (15)	0.3085 (2)	0.3390 (2)	0.0432 (5)
H22	0.2392	0.3525	0.2823	0.065*
H33	0.2550	0.3273	0.3924	0.065*
H11	0.1603	0.3422	0.3530	0.065*
C1A	0.21307 (19)	0.1496 (3)	0.3217 (3)	0.0363 (7)
C2A	0.1721 (3)	0.0988 (4)	0.2311 (3)	0.0531 (8)
H2A	0.1482	0.1641	0.1823	0.064*
C3A	0.1676 (3)	-0.0512 (4)	0.2153 (3)	0.0626 (10)
H3A	0.1398	-0.0875	0.1553	0.075*
C4A	0.2039 (2)	-0.1480 (4)	0.2873 (4)	0.0640 (11)
H4A	0.2006	-0.2489	0.2760	0.077*
C5A	0.2449 (3)	-0.0940 (4)	0.3758 (3)	0.0555 (9)
H5A	0.2698	-0.1588	0.4243	0.067*
C6A	0.2493 (3)	0.0551 (4)	0.3931 (3)	0.0458 (7)
H6A	0.2770	0.0912	0.4533	0.055*

N1B	0.52868 (13)	0.2975 (2)	0.5035 (2)	0.0403 (5)
H1	0.5861	0.3342	0.4989	0.061*
H2	0.4989	0.3397	0.5564	0.061*
H3	0.4978	0.3154	0.4448	0.061*
C1B	0.53385 (18)	0.1390 (3)	0.5207 (2)	0.0330 (6)
C2B	0.5767 (2)	0.0855 (4)	0.6081 (3)	0.0498 (8)
H2B	0.6015	0.1493	0.6573	0.060*
C3B	0.5824 (3)	-0.0655 (4)	0.6217 (4)	0.0622 (10)
H3B	0.6104	-0.1037	0.6810	0.075*
C4B	0.5467 (3)	-0.1590 (4)	0.5479 (4)	0.0622 (11)
H4B	0.5521	-0.2602	0.5568	0.075*
C5B	0.5030(3)	-0.1046 (4)	0.4610 (4)	0.0599 (11)
H5B	0.4775	-0.1685	0.4122	0.072*
C6B	0.4973 (3)	0.0456 (4)	0.4468 (3)	0.0453 (7)
H6B	0.4688	0.0836	0.3877	0.054*
S1A	0.47642 (6)	0.50293 (6)	0.27815 (5)	0.0354 (3)
O1A	0.53917 (14)	0.5609 (3)	0.3548 (2)	0.0588 (5)
O2A	0.43955 (15)	0.3610 (2)	0.30490 (17)	0.0501 (5)
O3A	0.5129 (3)	0.5072 (3)	0.1721 (3)	0.0610 (11)
O4A	0.39386 (13)	0.6139 (2)	0.27837 (19)	0.0492 (5)
H4	0.3495	0.5784	0.2468	0.074*
S1B	0.22562 (6)	0.50860 (7)	0.06533 (5)	0.0340 (3)
O1B	0.29288 (13)	0.5696 (2)	-0.00469 (18)	0.0543 (5)
O2B	0.18378 (13)	0.3739 (2)	0.02858 (18)	0.0477 (5)
O3B	0.2609 (3)	0.4930 (2)	0.1701 (3)	0.0570 (10)
O4B	0.14771 (13)	0.6268 (2)	0.0699 (2)	0.0493 (5)
H44	0.1067	0.6000	0.1100	0.074*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0488 (13)	0.0354 (12)	0.0452 (12)	0.0039 (9)	-0.0019 (9)	-0.0050 (10)
C1A	0.0319 (14)	0.0339 (15)	0.0431 (16)	0.0026 (11)	0.0016 (12)	-0.0062 (12)
C2A	0.0594 (19)	0.0502 (19)	0.0496 (18)	0.0050 (16)	-0.0107 (17)	-0.0079 (17)
C3A	0.069 (2)	0.055 (2)	0.063 (3)	-0.001 (2)	-0.0126 (19)	-0.023 (2)
C4A	0.0542 (19)	0.0386 (19)	0.099 (3)	-0.0010 (14)	0.007 (2)	-0.022 (2)
C5A	0.0558 (18)	0.0426 (17)	0.068 (3)	0.0087 (16)	-0.0002 (19)	0.0097 (17)
C6A	0.0451 (15)	0.045 (2)	0.0471 (18)	-0.0003 (18)	-0.0043 (14)	-0.0026 (16)
N1B	0.0429 (11)	0.0348 (12)	0.0433 (11)	-0.0024 (9)	0.0007 (9)	-0.0008 (10)
C1B	0.0320 (14)	0.0303 (14)	0.0366 (15)	-0.0033 (10)	0.0044 (11)	0.0006 (11)
C2B	0.0532 (18)	0.0478 (18)	0.0483 (17)	0.0025 (15)	-0.0088 (16)	0.0018 (15)
C3B	0.062 (2)	0.058 (3)	0.067 (2)	0.008 (2)	0.003 (2)	0.024 (2)
C4B	0.0561 (19)	0.0345 (18)	0.096 (3)	-0.0007 (15)	0.021 (2)	0.0099 (19)
C5B	0.0511 (18)	0.045 (2)	0.084 (3)	-0.0072 (17)	0.004 (2)	-0.0201 (19)
C6B	0.0410 (15)	0.0461 (19)	0.0487 (19)	-0.0017 (18)	-0.0040 (14)	-0.0100 (17)
S1A	0.0319 (6)	0.0352 (5)	0.0392 (6)	-0.0012 (2)	-0.0005 (5)	0.0038 (2)
O1A	0.0503 (12)	0.0554 (14)	0.0705 (14)	-0.0116 (11)	-0.0226 (10)	0.0051 (12)
O2A	0.0625 (13)	0.0365 (11)	0.0514 (12)	-0.0065 (10)	-0.0036 (10)	0.0067 (8)

O3A	0.058 (2)	0.075 (2)	0.050(2)	0.0183 (11)	0.0188 (19)	0.0205 (10)
O4A	0.0391 (10)	0.0430 (11)	0.0655 (13)	0.0065 (8)	-0.0047 (9)	-0.0081 (10)
S1B	0.0305 (6)	0.0341 (5)	0.0374 (5)	-0.0020(2)	0.0013 (4)	-0.0020 (3)
O1B	0.0427 (11)	0.0621 (16)	0.0580 (13)	-0.0112 (10)	0.0141 (9)	0.0022 (12)
O2B	0.0499 (11)	0.0368 (10)	0.0564 (12)	-0.0074 (9)	0.0048 (9)	-0.0099 (9)
O3B	0.0476 (18)	0.073 (2)	0.050 (2)	-0.0086 (10)	-0.0119 (18)	0.0084 (10)
O4B	0.0470 (11)	0.0379 (11)	0.0630 (12)	0.0054 (9)	0.0082 (10)	0.0013 (10)
Geometric param	neters (Å, °)					
N1A—C1A		1.462 (4)	C1B-	-С6В	1.37	8 (4)
N1A—H22		0.8900	C2B-	C3B	1.38	6 (6)
N1A—H33		0.8900	C2B-	–H2B	0.93	00
N1A—H11		0.8900	C3B-	C4B	1.37	3 (6)
C1A—C6A		1.361 (5)	C3B-	-H3B	0.93	00
C1A—C2A		1.385 (5)	C4B-	-C5B	1.37	4 (6)
C2A—C3A		1.380 (5)	C4B-	-H4B	0.93	00
C2A—H2A		0.9300	C5B-	-C6B	1.38	0 (4)
C3A—C4A		1.380 (6)	C5B-	-H5B	0.93	00
СЗА—НЗА		0.9300	C6B-	-H6B	0.93	00
C4A—C5A		1.372 (6)	S1A-	-01A	1.43	5 (2)
C4A—H4A		0.9300	S1A-	-O2A	1.43	6 (2)
C5A—C6A		1.375 (4)	S1A-	-O3A	1.46	3 (4)
C5A—H5A		0.9300	S1A-	-O4A	1.554	4 (2)
С6А—Н6А		0.9300	O4A-	H4	0.82	01
N1B—C1B		1.460 (3)	S1B-	-O1B	1.43	1 (2)
N1B—H1		0.8900	S1B-	-O2B	1.44	30 (19)
N1B—H2		0.8900	S1B-	-O3B	1.44	8 (4)
N1B—H3		0.8900	S1B-	-O4B	1.55	0 (2)
C1B—C2B		1.371 (4)	O4B-	–H44	0.82	00
C1A—N1A—H22	2	109.5	C2B-	-C1B-N1B	119.3	8 (3)
C1A—N1A—H33	3	109.5	C6B-	-C1BN1B	119.	0 (3)
H22—N1A—H33	3	109.5	C1B-	-C2BC3B	118.	8 (3)
C1A—N1A—H11	1	109.5	C1B-	C2BH2B	120.	6
H22—N1A—H11		109.5	C3B-	-C2B-H2B	120.	6
H33—N1A—H11		109.5	C4B-	-C3BC2B	120.	2 (3)
C6A—C1A—C2A	4	121.4 (3)	C4B-	-C3B-H3B	119.9	9
C6A—C1A—N1A	4	120.3 (3)	C2B-	-C3B-H3B	119.9	9
C2A—C1A—N1A	A	118.4 (3)	C3B-	-C4BC5B	120.	7 (4)
C3A—C2A—C1A	4	118.2 (3)	C3B-	-C4B-H4B	119.	7
C3A—C2A—H2A	4	120.9	C5B-	-C4B-H4B	119.	7
C1A—C2A—H2A	4	120.9	C4B-	-C5BC6B	119.4	4 (3)
C2A—C3A—C4A	4	120.9 (3)	C4B-	-C5B-H5B	120.	3
С2А—С3А—Н3А	4	119.6	C6B-	-C5B-H5B	120.	3
C4A—C3A—H3A	4	119.6	C1B-	-C6BC5B	119.7	7 (3)
C5A—C4A—C3A	4	119.4 (3)	C1B-	-C6B—H6B	120.	2
C5A—C4A—H4A	A	120.3	C5B-	-С6В—Н6В	120.	2
C3A—C4A—H4A	A	120.3	01A-	-S1A02A	113.	28 (16)
C4A—C5A—C6A	Ą	120.5 (3)	01A-		114.	1 (2)

C4A—C5A—H5A	119.8	O2A—S1A—O3A	112.27 (15)
С6А—С5А—Н5А	119.8	O1A—S1A—O4A	103.72 (14)
C1A—C6A—C5A	119.6 (3)	O2A—S1A—O4A	107.62 (12)
С1А—С6А—Н6А	120.2	O3A—S1A—O4A	104.85 (16)
С5А—С6А—Н6А	120.2	S1A—O4A—H4	109.5
C1B—N1B—H1	109.5	O1B—S1B—O2B	113.68 (16)
C1B—N1B—H2	109.5	O1B—S1B—O3B	113.0 (2)
H1—N1B—H2	109.5	O2B—S1B—O3B	111.55 (14)
C1B—N1B—H3	109.5	O1B—S1B—O4B	103.86 (13)
H1—N1B—H3	109.5	O2B—S1B—O4B	107.56 (12)
H2—N1B—H3	109.5	O3B—S1B—O4B	106.47 (17)
C2B—C1B—C6B	121.2 (3)	S1B—O4B—H44	109.5
C6A—C1A—C2A—C3A	0.9 (5)	C6B—C1B—C2B—C3B	-0.4 (4)
N1A—C1A—C2A—C3A	-179.6 (3)	N1B—C1B—C2B—C3B	-178.8 (3)
C1A—C2A—C3A—C4A	-0.7 (5)	C1B—C2B—C3B—C4B	0.9 (4)
C2A—C3A—C4A—C5A	0.0 (6)	C2B—C3B—C4B—C5B	-1.6 (5)
C3A—C4A—C5A—C6A	0.4 (6)	C3B—C4B—C5B—C6B	1.7 (6)
C2A—C1A—C6A—C5A	-0.4 (5)	C2B—C1B—C6B—C5B	0.5 (5)
N1A—C1A—C6A—C5A	-180.0 (3)	N1B-C1B-C6B-C5B	178.9 (3)
C4A—C5A—C6A—C1A	-0.2 (5)	C4B—C5B—C6B—C1B	-1.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$		
N1A—H11…O1A ⁱ	0.89	1.95	2.821 (2)	167.		
N1B—H2···O3A ⁱⁱ	0.89	2.05	2.867 (3)	153.		
N1A—H33···O2B ⁱⁱⁱ	0.89	2.01	2.884 (3)	169.		
N1B—H3…O1A	0.89	2.58	3.069 (3)	115.		
N1B—H3···O2A	0.89	2.03	2.916 (3)	175.		
N1A—H22···O3B	0.89	1.95	2.817 (4)	163.		
O4A—H4···O3B	0.82	1.79	2.603 (4)	175.		
O4B—H44…O3A ⁱ	0.82	1.84	2.635 (4)	163.		
N1B—H1…O1B ⁱⁱ	0.89	1.94	2.828 (3)	175.		
Symmetry codes: (i) $x-1/2$, $-y+1$, z ; (ii) $-x+1$, $-y+1$, $z+1/2$; (iii) $-x+1/2$, y , $z+1/2$.						

Fig. 3